
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The Reverse Engineering in Oriented Aspect
“Detection of semantics clones”

Amel Belmabrouk, Belhadri Messabih

Abstract-Attention to the reverse engineering in oriented aspect programming (AOP) is rapidly growing as its benefits in large software

system development and maintenance are increasingly recognized. This paper reports on the challenges of using the reverse engineering

in oriented aspect to detect the crosscutting concerns. So we present a new idea to detect a clone semantic in code. We first present the

Principe of the AOP, then, we report on application of reverse engineering in legacy industrial software system. The novel aspect of our

approach is the use of program dependence graphs (PDGs) wich one of the important techniques of aspect mining to detect duplicate

code in programs. We have extended the definition of a code clone to include semantically related code. We reduced the difficult graph

similarity problem to a tree similarity problem by mapping interesting semantic fragments to their related syntax.

Keywords: Oriented Aspect programming, Crosscutting Concern, Reverse engineering, Aspect mining, Program Dependence Graphs

(PDG’s).

I. INTRODUCTION

Software that is used in a real-world environment must

change or become less and less useful in that environment.

As the context, in wich the software system is deployed,

changes, the software has to be maintained and adapted in

order to deliver the new functions required of it and to

meet the new constraints imposed on it. A necessary pre-

requisite for effectively maintaining and evolving a

software system is to maintain an ‚operational‛

understanding of the system in question, and this is the

objective of reverse engineering research.

The landscape of reverse engineering research is now

changing in reponse to the evolution of the overall problem.

Software architecture extraction is extending to include all

the different aspects of software mentioned above.

In this paper, we focus on the challenges of using one of

the techniques of aspect mining (reverse engineering) for

understanding and debugging the complexity of code that

can make maintenance activity easier. We propose the use

of program dependence graphs (PDGs).

This article has five sections. The first is a presentation

of the use of reverse engineering in aspect oriented

programming. We extend, then, aspect mining techniques.

We describe, then, our contribution in order to remedy the

problem, using a program dependence graph. Finally, we

conclude with perspectives and future works.

II. REVERSE ENGINEERING IN ASPECT ORIENTED

PROGRAMMING

II.1 Aspect Oriented Programming (AOP)

Aspect Oriented Programming (AOP) is a new

programming paradigm, with constructs explicitly devoted

to handling crosscutting concerns. In an Object-Oriented

system, it often happens that functionalities, such as

persistence, exception handling, error management,

logging, are scattered across the classes and are highly

tangled with the surrounding code portions. Moreover, the

available modularization/ encapsulation mechanisms fail to

factor them out. Aspects have been conceived to address

such situations.

AOP introduces the notion of aspect, as the

modularization unit for the crosscutting concerns. Common

code that affects distant portions of a system can be located

in a single module, an aspect.

Aspect Oriented Programming provides explicit

constructs for the modularization of the crosscutting

concerns: functionalities that traverse the principal

decomposition of an application and thus cannot be

assigned to a single modular unit in traditional

programming paradigms. Existing software often contains

several instances of such crosscutting concerns such as

persistence, logging, caching, etc. Consequently, refactoring

of these applications towards AOP is beneficial, as it

separates the principal decomposition from these other

functionalities, by modularizing the crosscutting concerns.

The process of migrating existing software to AOP is

highly knowledge-intensive and any refactoring toolkit

should include the user in a change-refine-loop. However,

there is considerable room for automation in two respects:

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

• Aspect mining – identification of candidate aspects in the

given code and

• Refactoring – semantic-preserving transformations that

migrate the code to AOP.

II.2 The Reverse Engineering

According to Chikofskyand Cross:

“Reverse engineering is the process of analyzing a subject system

with two goals in mind: (1) to identify the system’s components

and their interrelationships; and, (2) to create representations of

the system in another form or at a higher level of abstraction”

III. ASPECT MINING

Aspect mining is typically described as a specialized

reverse engineering process, which is to say that legacy

systems (source code) are investigated (mined) in order to

discover which parts of the system can be represented

using aspects. This knowledge can be used for several

goals, including reengineering, refactoring, and program

understanding.

Since aspect mining is a relatively recent research area, we

distinguish different approaches for aspect mining

III.1 Aspect Mining Techniques
A) Fan-In Analysis

The fan-in of a method M is defined as the number of

calls to method M madefrom other methods. Because of

polymorphism, one method call can affect thefan-in of

several other methods. A call to method M contributes to

the fan-in of allmethods refined by M as well as to all

methods that are refining M. The moreplaces the method

is called from the more likely it is that the method

implements acrosscutting concern so the amount of calls

(fan-in) is a good measure for theimportance and

scattering of the discovered concern. [Mar]

The analysis follows three consecutive steps: (1)

Automatic computation of the fan-in metric for all the

methods in the targeted source code. The result is stored

as a set of ‚method-callers‛ structures that can be sorted

by fan-in value. (2) Filtering of the results of the first

step, by restricting the set of methods to those having a

fan-in above a certain threshold; filtering getters and

setters from this restricted set. Get/Setters on static fields

are not eliminated because these can be used in the

Singleton design pattern; filtering utility methods, like

toString(), collections manipulation methods, etc. (3)

Analysis of the remaining set of methods. The elements

considered at this step are the callers and the call sites,

the method’s name and implementation, and the

comments in the source code. [Mar, 06]
B) Dynamic Analysis

The technique of Formal Concept Analysis (FCA) is

fairly simple. Starting from a (potentially large) set of

elements and properties of those elements, FCA determines

maximal groups of elements and properties, called

concepts.

FCA is used for aspect mining according to the

following procedure: Execution traces are obtained by

running an instrumented version of the program under

analysis for a set of use cases. The execution traces

associated with the use cases are the objects, while the

executed class methods are the attributes. In the resulting

concept lattice, the concepts specific of each use case are

located, when existing. The use case specific concepts are

those labelled by at least one trace for some use case (i.e. the

concept contains at least one specific property) while the

concepts with zero or more properties as labels are

regarded as generic concepts. When the methods that label

one concept crosscut the principal decomposition, a

candidate aspect is determined.

C) Clustering

Clustering is a division of data into groups of similar

objects.

Clustering can be considered the most important

unsupervised learning problem: so, as every other problem

of this kind, it deals with finding a structure in a collection

of unlabeled data.

Many clustering techniques are available in the

literature. Most clustering algorithms are based on two

popular techniques known as partitional and hierarchical

clustering like k-means, fuzzy c-means and hierarchical

agglomerative. [Gab, 06]

D) Clone Detection

Clone detection techniques attempt at finding

duplicated code, which may have undergone minor

changes afterward.

The typical motivation for clone detection is to factor out

copy-paste-adapt code, and replace it by a single procedure.

Code clone

A code clone, in general, means a code fragment that

has identical or similar code fragments to it in the source

code.

However, there is no single or generic definition for a code

clone. So far, several methods of code clone detection have

been proposed, and each has its own definition of code

clone. [Yos, 06]

Clone Types

There are two main kinds of similarity between code

fragments.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fragments can be similar based on the similarity of their

program text, or they can be similar based on their

functionality (independent of their text). The first kind of

clone is often the result of copying a code fragment and

pasting into another location. In the following we provide

the types of clones based on both the textual (Types 1 to 3)

and functional (Type 4) similarities:

Type-1:Identical code fragments except for variations in

whitespace, layout and comments.

Type-2: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespace, layout

and comments.

Type-3: Copied fragments with further modifications such

as changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout

and comments.

Type-4: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants. [Cha, 07] [Cha, 09] [Mar]

Clone Detection Process

A clone detector must try to find pieces of code of high

similarity in a system’s source text.

The main problem is that it is not known beforehand which

code fragments may be repeated.

Preprocessing

Remover uninteresting code, determine source and

comparison units/granularities.

Transformation

One or more extraction and/or transformation

techniques are applied to the preprocessed code to obtain

an intermediate representation of the code.

Match Detection

Transformed comparison units (and/or metrics

calculated for those units) are compared to find similar

source units in the transformed code.

Formatting

Clone pair/class locations of the transformed code

mapped to the original code base by line numbers and file

location.

Post-processing: Filtering

In this post-processing phase, clones are extracted from

the source, visualized with tools and manually analyzed to

filter out false positives.

Aggregation

In order to reduce the amount of data or for ease of

analysis, clone pairs (if not already clone classes) are

aggregated to form clone classes or families. [Cha, 09]

Example of code clone

The Root Causes for Code Clones

Sometimes programmers are simply forced to duplicate

code because of limitations of the programming language

being used. Analyzing these root causes in more detail

could help to improve the language design.

Systems are modularized based on principles such as

information hiding, minimizing coupling, and maximizing

cohesion. In the end—at least for systems written in

ordinary programming languages—the system is composed

of a fixed set of modules. Ideally, if the system needs to be

changed, only a very small number of modules must be

adjusted. Yet, there are very different change scenarios and

it is not unlikely that the chosen modularization forces a

change to be repeated for many modules. The triggers for

such changes are called cross-cutting concerns.

Another important root cause is that programmers often

reuse the copied text as a template and then customize the

template in the pasted context.

Consequences of Cloning

 There are plausible arguments that code cloning

increases maintenance effort. Changes must be made

consistently multiple times if the code is redundant. Often

it is not documented where code has been copied. Manual

search for copied code is infeasible for large systems.

Furthermore during analysis, the same code must be read

over and over again, then compared to the other code just

to find out that this code has already been analyzed. Only if

you make a detailed comparison, which can be difficult if

there are subtle differences in the code or its environment,

you can be sure that the code is indeed the same. This

comparison can be fairly expensive. If the code would have

been implemented only once in a function, this effort could

have been completely avoided. For these reasons, code

cloning is number one on the stink parade of bad smell by

Fowler. But there are also counter arguments.

III.2 Clone detection techniques

1. static void foo() throws RESyntaxException {

 2. String a[] = new String [] { "123,400", "abc", "orange 100" };

 3. org.apache.regexp.REpat = new org.apache.regexp.RE("[0-9,]+");

 4. int sum = 0;

 5. for (inti = 0; i<a.length; ++i)

 6. if (pat.match(a[i]))

 7. sum += Sample.parseNumber(pat.getParen(0));

 8. System.out.println("sum = " + sum);

9. }

10.static void goo(String [] a) throws RESyntaxException {

11. RE exp = new RE("[0-9,]+");

12.int sum = 0;

13.for (inti = 0; i<a.length; ++i)

14.if (exp.match(a[i]))

15.sum += parseNumber(exp.getParen(0));

16.System.out.println("sum = " + sum);

17. }

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Clone detection techniques aim at finding duplicated

code, which may have been adapted slightly from the

original.

Several clone detection techniques have been described and

implemented:

 Textual Approaches

Textual approaches (or text-based techniques) perform

little or no transformation to the ‘raw’ source code before

attempting to detect identical or similar (sequences of) lines

of code. Typically, white space and comments are ignored.

 Lexical Approaches

Lexical approaches (or token-based techniques) begin by

transforming the source code into a sequence of lexical

‚tokens‛ using compiler-style lexical analysis. The

sequence is then scanned for duplicated subsequences of

tokens and the corresponding original code is returned as

clones.

Lexical approaches are generally more robust over minor

code changes such as formatting, spacing, and renaming

than textual techniques.

 Syntactic Approaches

Syntactic Approaches (or AST-basedtechniques) use

parsers to first obtain a syntactical representation of the

source code, typically an abstract syntax tree (AST). The

clone detection algorithms then search for similar subtrees

in this AST.

 Semantic Approaches

Semantics-aware approaches have also been proposed,

using static program analysis to provide more precise

information than simply syntactic similarity.

In some approaches, the program is represented as a

program dependency graph (PDG). The nodes of this graph

represent expressions and statements, while the edges

represent control and data dependencies. This

representation abstracts from the lexical order in which

expressions and statements occur to the extent that they are

semantically independent. The search for clones is then

turned into the problem of finding isomporphicsubgraphs.

[Kom]

IV. PROGRAM DEPENDENCE GRAPH

Existing scalable approaches to clone detection are

limited to finding program fragments that are similar only

in their contiguous syntax. Other, semantics-based

approaches are more resilient to differences in syntax, such

as reordered statements, related statements interleaved

with other unrelated statements, or the use of semantically

equivalent control structures. However, none of these

techniques have scaled to real world code bases. These

approaches capture semantic information from Program

Dependence Graphs (PDGs), program representations that

encode data and control dependencies between statements

and predicates.

A program dependence graph (PDG) is a static

representation of the flow of data through a procedure. It is

commonly used to implement program slicing. The nodes of

a PDG consist of program points constructed from the

source code: declarations, simple statements, expressions,

and control points. A control point represents a point at

which a program branches, loops, or enters or exits a

procedure and is labeled by its associated predicate.

Our work describes the algorithm that finds clones

semantics. The novel aspect of our approach is the use of

program dependence graphs (PDGs)

We introduce an extended definition of code clones,

based on PDG similarity that captures more semantic

information than previous approaches. We then provide a

scalable, approximate algorithm for detecting these clones.

We reduce the difficult graph similarity problem to a

simpler tree similarity problem by creating a mapping

between PDG subgraphs and their related structured

syntax.

Fig. 1Our semantic clone detection algorithm

Deckardvectorgeneratio

n

AST

PDG PDG sous graphe

Image syntactique

Characteristicvectors

Clones

sous

graphe

LSH Clustering

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

High-Level Algorithm

There are difficulties with locating these semantic clones

in a scalable manner.

Thus far, no scalable algorithm exists for detecting semantic

clones.

We present a scalable, approximate technique for

locating semantic clones based on the fact that both

structured syntax trees and dependence graphs are derived

from the original source code. Because of this relationship,

we are able to construct a mapping function that locates the

associated syntax for a given PDG subgraph.

We refer to this associated syntax as the syntactic image.

For compatibility with DECKARD’s tree-based clone

detection, we map to AST forests.

The syntactic image of a PDG subgraph G, μ(G), is the

maximal set of AST subtrees that correspond to the concrete

syntax of the nodes in G.

We map each of these nodes to their structured syntax.

Mapping a PDG subgraph to an AST forest effectively

reduces the graph similarity problem to an easier tree

similarity problem that we can solve efficiently using

DECKARD.

Yields something that we can match very efficiently,

both partially and fully, using DECKARD’s vector

generation. This relationship to syntax effectively reduces

the graph similarity problem to an easier tree similarity

problem.

Our algorithm functions as follows:

1. We run DECKARD’s primary vector generation. Subtree

and sliding window vectors efficiently provide contiguous

syntactic clone candidates for the entire program.

2. For each procedure, we enumerate a finite set of

significant subgraphs; that is, we enumerate subgraphs that

hold semanticrelevance and are likely to be good semantic

clone candidates.

In short, we produce subgraphs of maximal size that are

likely to represent distinct computations.

3. For each subgraphG, we compute μ(G) to generate an

AST forest.

4. We use DECKARD’s sliding window vector merging to

generate a complete set of characteristic vectors for each

AST forest.

5. We introduce characteristic vectors to capture structural

information of trees (and forests).This is a key step in our

algorithm.

Characteristic vectors are generated with a post-order

traversal of the parse tree by summing up the vectors for

children with the vector for the parent’s node.

6. We use LSH to quickly solve the near-neighbor problem

and enumerate the clone groups. As before, we apply a set

of post-processing filters to remove spurious clone groups

and clone group members.

V. CONCLUSION

Different approaches for clone detection have been

proposed in the literature. Most of them focus on detecting

syntactic similarity of code because checking semantic

similarity is very difficult (and in general undecidable).

This paper presents the approach for semantic clone

detection based on dependence graphs. We have extended

the definition of a code clone to include semantically

related code. We reduced the difficult graph similarity

problem to a tree similarity problem by mapping

interesting semantic fragments to their related syntax.

The main idea of our work is to compute certain

characteristic vectors to approximate structural information

within ASTs and then adapt Locality Sensitive Hashing (LSH)

to efficiently cluster similar vectors (and thus code clones).

VI. REFERENCES

[1] [Cha, 07] Chanchal Kumar Roy and James R. Cordy, A

Survey on Software Clone Detection Research, September 26,

2007.

[2] [Cha, 09]Chanchal K. Roy, James R. Cordya, Rainer

Koschkeb, Comparison and Evaluation of Code Clone

Detection Techniques and Tools, Queen’s University,

Canada University of Bremen, Germany, February 24, 2009.

[3] [Gab, 06] GABRIELA .ERBAN AND GRIGORETA SOFIA

MOLDOVAN, A COMPARISON OF CLUSTERING

TECHNIQUES IN ASPECT MINING, STUDIA UNIV.

BABE._BOLYAI, INFORMATICA, Volume LI, Number 1,

2006

[4] [Kom]RaghavanKomondoor, Susan Horwitz, Using Slicing

to Identify Duplication in Source Code, Computer Sciences

Department University of Wisconsin-Madison

[5] [Mar, 06] Marius Marin, Leon Moonen and Arie van

Deursen, Identifying Crosscutting Concerns Using Fan-in

Analysis, Delft University of Technology Software

Engineering, 2006

[6] [Mar]MagielBruntink, Arie van Deursen, Tom Tourwé, An

Evaluation of Clone Detection Techniques for Identifying

Crosscutting Concerns

[7] [Mar] Marius Adrian MARIN, An Integrated System to

Manage Crosscutting Concerns in Source Code

[8] [Pao] Paolo Tonella and Mariano Ceccato, Aspect Mining

through the Formal Concept Analysis of Execution

TracesITC-irst, Centro per la RicercaScienti_ca e Tecnologica

[9] 38050 Povo (Trento), Italy

[10] [Say]Syarbaini Ahmad, AbdAzimAbdGhani, Nor

FazlidaMohdSani&RodziahAtan, SLICING ASPECT

ORIENTED PROGRAM USING DEPENDENCE FLOW

GRAPH FOR MAINTENANCE PURPOSE, University Putra

Malaysia, Serdang.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[11] [Yos, 06] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto,

Katsuro Inoue, Method and implementation for

investigating code clones in a software system, Graduate

School of Information Science and Technology, Osaka

University, November 2006.

